Package: micompr 1.1.4.9000

micompr: Multivariate Independent Comparison of Observations

A procedure for comparing multivariate samples associated with different groups. It uses principal component analysis to convert multivariate observations into a set of linearly uncorrelated statistical measures, which are then compared using a number of statistical methods. The procedure is independent of the distributional properties of samples and automatically selects features that best explain their differences, avoiding manual selection of specific points or summary statistics. It is appropriate for comparing samples of time series, images, spectrometric measures or similar multivariate observations. This package is described in Fachada et al. (2016) <doi:10.32614/RJ-2016-055>.

Authors:Nuno Fachada [aut, cre]

micompr_1.1.4.9000.tar.gz
micompr_1.1.4.9000.zip(r-4.5)micompr_1.1.4.9000.zip(r-4.4)micompr_1.1.4.9000.zip(r-4.3)
micompr_1.1.4.9000.tgz(r-4.4-any)micompr_1.1.4.9000.tgz(r-4.3-any)
micompr_1.1.4.9000.tar.gz(r-4.5-noble)micompr_1.1.4.9000.tar.gz(r-4.4-noble)
micompr_1.1.4.9000.tgz(r-4.4-emscripten)micompr_1.1.4.9000.tgz(r-4.3-emscripten)
micompr.pdf |micompr.html
micompr/json (API)

# Install 'micompr' in R:
install.packages('micompr', repos = c('https://nunofachada.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/nunofachada/micompr/issues

Datasets:
  • pphpc_diff - Data from two implementations of the PPHPC model, one of which setup with a different parameter
  • pphpc_noshuff - Data from two implementations of the PPHPC model, one of which has agent list shuffling deactivated
  • pphpc_ok - Data from two similar implementations of the PPHPC model

On CRAN:

micomprmultivariatemultivariate-datamultivariate-distributionsmultivariate-observationsnon-parametricparametric-testsstatistical-analysisstatistical-datastatistical-methodsstatistical-tests

5.49 score 3 stars 52 scripts 256 downloads 11 exports 0 dependencies

Last updated 4 months agofrom:642fcbb64b. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 11 2024
R-4.5-winOKNov 11 2024
R-4.5-linuxOKNov 11 2024
R-4.4-winOKNov 11 2024
R-4.4-macOKNov 11 2024
R-4.3-winOKNov 11 2024
R-4.3-macOKNov 11 2024

Exports:assumptionsassumptions_manovaassumptions_paruvcenterscalecmpoutputconcat_outputsgrpoutputsmicomppvalftikzscattscat_apply

Dependencies:

Examples of generated Latex tables

Rendered fromtolatex-examples.Rnwusingknitr::knitron Nov 11 2024.

Last update: 2016-03-26
Started: 2016-03-06

micompr: An R Package for Multivariate Independent Comparison of Observations

Rendered frompaper.Rnwusingknitr::knitron Nov 11 2024.

Last update: 2022-05-23
Started: 2016-03-23

Readme and manuals

Help Manual

Help pageTopics
Parametric tests assumptionsassumptions
Determine the assumptions for the MANOVA testassumptions_manova
Determine the assumptions for the parametric comparison testassumptions_paruv
Get assumptions for parametric tests performed on output comparisonsassumptions.cmpoutput
Get assumptions for parametric tests performed on each comparisonsassumptions.micomp
Center and scale vectorcenterscale
Compares output observations from two or more groupscmpoutput
Concatenate multiple outputs with multiple observationsconcat_outputs
Load and group outputs from filesgrpoutputs
Multiple independent comparisons of observationsmicomp
Plot _p_-values for testing the assumptions of the parametric tests used in output comparisonplot.assumptions_cmpoutput
Plot _p_-values for testing the multivariate normality assumptions of the MANOVA testplot.assumptions_manova
Plot _p_-values for testing the assumptions of the parametric tests used in multiple output comparisonplot.assumptions_micomp
Plot _p_-values for testing the assumptions of the parametric tests used in output comparisonplot.assumptions_paruv
Plot comparison of an outputplot.cmpoutput
Plot grouped outputsplot.grpoutputs
Plot projection of output observations on the first two dimensions of the principal components spaceplot.micomp
Data from two implementations of the PPHPC model, one of which setup with a different parameterpphpc_diff
Data from two implementations of the PPHPC model, one of which has agent list shuffling deactivatedpphpc_noshuff
Data from two similar implementations of the PPHPC modelpphpc_ok
Print method for the assumptions of parametric tests used in a comparison of an outputprint.assumptions_cmpoutput
Print information about the assumptions of the MANOVA testprint.assumptions_manova
Print information about the assumptions concerning the parametric tests performed on multiple comparisons of outputsprint.assumptions_micomp
Print information about the assumptions of the parametric testprint.assumptions_paruv
Print information about comparison of an outputprint.cmpoutput
Print information about grouped outputsprint.grpoutputs
Print information about multiple comparisons of outputsprint.micomp
Format p-valuespvalf
Default p-value formatting methodpvalf.default
Summary method for the assumptions of parametric tests used in a comparison of an outputsummary.assumptions_cmpoutput
Summary method for the assumptions of parametric tests used in multiple comparisons of outputssummary.assumptions_micomp
Summary method for comparison of an outputsummary.cmpoutput
Summary method for grouped outputssummary.grpoutputs
Summary method for multiple comparisons of outputssummary.micomp
Simple 'TikZ' scatter plottikzscat
Convert 'cmpoutput' object to 'LaTeX' tabletoLatex.cmpoutput
Convert 'micomp' object to 'LaTeX' tabletoLatex.micomp